
Advanced Graphics

A
le

x
B

en
to

n,
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 –
 A

.B
en

to
n@

da
m

tp
.c

am
.a

c.
uk

Su
pp

or
te

d
in

 p
ar

t b
y

G
oo

gl
e

U
K

, L
td

“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one

trillion rays w
ere traced in the generation of this im

age.

Ray Tracing
All the maths

Ray tracing

● A powerful alternative to polygon scan-conversion techniques
● An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the
center of every pixel and see what it hits.

The algorithm
Select an eye point and a screen plane.
for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.
for (each object in the scene):

if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.

Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s

sc
ul

pt
ur

e"
 b

y
Tr

ev
or

 G
. Q

ua
yl

e
(2

00
8)

"POV Planet" by Casey Uhrig (2004)

It doesn’t take much code

The basic algorithm is
straightforward, but there's
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit

on the back of his business card. (circa 1983)

Running time

The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x
(num objects in scene) x
(num reflective surfaces) x
(num transparent surfaces) x
(num shadow rays) x
(ray reflection depth) x …

Contrast this to polygon rasterization: time is a function of the
number of elements in the scene times the number of lights.

Image by nVidia

Coloring pixels

We approximate lighting as the sum of the
ambient, diffuse, and specular components of
the light reflected to the eye.
● Associate scalar parameters

 kA, kD and kS with the surface.
● Calculate diffuse and specular

from each light source separately.

E

N

D

P

R

L
1

L
2

Ambient light: kA

Diffuse light: kD(N•L)
Specular light: kS(R•E)n

Lighting revisited

The total illumination at P is:
I(P) = kA+kD(N•L)+kS(R•E)n

summed over all lights L.

N

α

E

θ
L

R

P

You remember this from Computer Graphics and
Image Processing last year, right?

Once you have the point P, the intersection of the ray with
the nearest object, you’ll compute how much each of the
lights in the scene illuminates P.
diffuse = 0
specular = 0
for (each light Li in the scene):

if (N•L) > 0:
[Optionally: if (a ray from P to Li can reach Li):]

diffuse += kD(N•L)
specular += kS(R•E)n

intensity at P = ambient + diffuse + specular

E
D

L1

Ray-traced illumination

P

L2

L3

N

Hitting things with rays

A ray is defined parametrically as
P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the
ray’s direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z:
x(t) = xE + txD

y(t) = yE + tyD t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation
x2 + y2 + z2 = 1 (γ)

Substituting equation (β) into (γ) gives
(xE+txD)2 + (yE+tyD)2 + (zE+tzD)2 = 1

which expands to
t2(xD

2+yD
2+zD

2) + t(2xExD+2yEyD+2zEzD) + (xE
2+yE

2+zE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t:

giving us two points of intersection.

Hitting things with rays:
Cylinder

The infinite unit cylinder, centered at the origin, has the implicit equation
x2 + y2 = 1 (δ)

Substituting equation (β) into (δ) gives
(xE+txD)2 + (yE+tyD)2 = 1

which expands to
t2(xD

2+yD
2) + t(2xExD+2yEyD) + (xE

2+yE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t as before, giving us two points of intersection.

The cylinder is infinite; there is no z term.

Hitting things with rays:
Planes and polygons

A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0 (ζ)

Substituting equation (α) into (ζ) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv

1) + yN(yE+tyD-yv
1) + zN(zE+tzD-zv

1)=0

E

N

D

E+tD

Hit test: Point in nonconvex polygon

Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling
transforms and just project along any axis by ignoring (for
example) the Z component.

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon

Winding number
● The winding number of a point P in a

curve C is the number of times that the
curve wraps around the point.

● For a simple closed curve (as any well-
behaved polygon should be) this will be
zero if the point is outside the curve, non-
zero of it’s inside.

● The winding number is the sum of the
angles from vi to P to vi+1.
○ Caveat: This method is elegant but slow.

Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994

Point in convex polygon

Half-planes method
● Each edge defines an infinite half-plane

covering the polygon. If the point P lies
in all of the half-planes then it must be in
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…v…

vn

vi

vi+1

P

eeR

Barycentric coordinates

Barycentric coordinates (tA,tB,tC) are a
coordinate system for describing the location of
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’

placed at (A,B,C) respectively so that the
center of gravity of the triangle lies at P.

● (tA,tB,tC) are also proportional to the
subtriangle areas.
○ The area of a triangle is ½ the length of the cross

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

The Jordan curve theorem

“Any simple closed curve C divides the points of the
plane not on C into two distinct domains (with no
points in common) of which C is the common
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838

-1922) in his Cours d'Analyse.
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B
must cross C.

A
B

C

The Jordan curve theorem on a sphere

Note that the Jordan curve theorem can be extended to
a curve on a sphere, or anything which is topologically
equivalent to a sphere.
“Any simple closed curve on a sphere separates the

surface of the sphere into two distinct regions.”

A

B

Finding the normal

We often need to know N, the normal to the surface at the
point where a ray hits a primitive.

If the ray R hits the primitive P at point X then N is…

We’ll use the normal for color, reflection, refraction and shadow rays.

Primitive type Equation for N

Unit Sphere centered at the origin N = X

Infinite Unit Cylinder centered at the origin N = [xX, yX, 0]

Infinite Double Cone centered at the origin N = X × (X × [0, 0, zX])

Plane with normal n N = n

Local coordinates, world coordinates

The cylinder “as it sees
itself”, in local coordinates

The cylinder “as the world sees it”, in world coordinates

5 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

* =

A 4x4 scale matrix, which
multiplies x and z by 5, y by 2.

A very common technique in graphics is to associate a
matrix transform, typically a 4x4 matrix, with a primitive.

Local coordinates, world coordinates

We can use the local to world
transform to describe an object’s
position, orientation, and size in the
world, while still coding the object as
centered around its local origin.

The trick is to hit an object described
in its local coordinates with a ray
described in world coordinates.

Local coordinates, world coordinates

Consider the following transform T:
[1 0 0 10]

 T = [0 1 0 0]

[0 0 1 0]

[0 0 0 1]

If we multiply T times [0, 0, 0], we get [10, 0, 0].
In other words, T describes an object which has been

translated 10 units up the positive X axis. T is a local to
world transformation.

Local coordinates, world coordinates:
Transforming the ray

In order to test whether a ray hits a
transformed object, we need to describe
the ray in the object’s local coordinates.
We transform the ray by the inverse of the
local to world matrix:

[1 0 0 -10]

 T-1 = [0 1 0 0]

[0 0 1 0]

[0 0 0 1]

P’(t) = T-1(P(t))

This will take a ray passing through x=10 and transform
it to a ray through x=0.

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

Local coordinates, world coordinates:
Transforming the ray’s direction

It would be convenient to expand P’(t).
However, we can’t write

P’(t)=T-1(P(t))=T-1(E)+t(T-1(D))

because T-1 includes a translation and D is
a unit direction. Instead write:

L=(((T-1)3x3)-1)T

P’(t)=T-1(E)+t(L(D))

where (((T-1)3x3)-1)T is the top left 3x3
matrix of T-1, inverted and transposed.
This eliminates the translation and addresses inverted
scale issues.

Wrong!

Right!

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

Finding the normal

Much like the direction D, we have to take care when
converting the normal N of the hit surface from local
coordinates back to world coordinates.

To find the world-coordinates normal N from the local-
coordinates NL, multiply NL by the transpose of the
inverse of the top left-hand 3x3 submatrix of T:

N=((T3x3)-1)T NL
● Can ignore translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c)

becomes (1/a,1/b,1/c) when inverted

local

world

T

NL

NW

Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object
transformed by local-to-world transform T:
1. Compute R’, the ray R in local coordinates, as

P’(t) = T(P(t)) = T(E) + t((((T-1)3x3)-1)T(D))

2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to

world coordinates by multiplying them by T.
4. Convert all hit normals from local coordinates back to

world coordinates by multiplying them by ((T3x3)-1)T.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed
primitive objects.

References
Jordan curves
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html

Intersection testing
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing
Foley & van Dam, Computer Graphics (1995)
Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object Space,
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html (1993)
Zack Waters, “Realistic Raytracing”, http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

